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Chapter 40

Maximizing Capital Growth With Black
Swan Protection

Edward O. Thorp*! and Steven Mizusawa*

1. Introduction

Consider an investor who allocates a fixed fraction of his wealth to a stock index at
the start of each period and the remainder to U.S. Treasury bills. We ask whether
the investor can be better off buying calls on the index instead, in order to limit
his one-period downside risk (in Nassim Taleb’s evocative terminology, bad “Black
Swans”)?

Tirst, we assume that stock price changes follow a stationary lognormal distri-
bution — the world of Black-Scholes and Long Term Capital Management. Taleb
calls this world where Caussian statistics prevail Mediocristan. Then we explore
the world of “Extremistan,” the distribution of price changes with much fatter tails
than the lognormal.

2. Assumptions and Formulas for Mediocristan

Portfolios are limited to either T-bills plus a stock index or T-bills plus call options
on this stock index. We assume no transactions costs for simplicity. Call options
are priced using the Black—-Scholes model and are European, i.e., only exercisable
at expiration. The index pays no dividends, again for simplicity.

The portfolio is revised annually. The one period arithmetic mean and variance,
p and o2, are related to the one period mean and variance of log X, m and 52, as
follows:

E(X)=p
Var(X) = o® (arithmetic)

{# = exp(m + 5°/2)

o2 = {exp(s?) — 1} exp(2m + 5%) (1)

We are typically given the arithmetic mean and standard deviation but we'll be
using the mean and standard deviation of log X, m and s because they give a much
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simpler form to the Black-Scholes formula. Solving (1),
m+s2/2=logu
o? = {exp(s?) — 1}p2
o /u? + 1 = exp(s?)
52 =log(1 + 0?/u?)
m =logp— %log(l + 02 /u?)
For example, if the annual parameters are

p=110, o?=004, theno?/u?=.033 and
s2=0.0325 s=0.1803 m = 0.0790

Conversely, if n = 0.10 and s = 0.20 then log p = 0.12, y = 1.1275, o2 = 0.0519,
o = 0.2278. We use these values, which are similar to those for indexes of stocks of
large U.S. companies for the period 1926-2010 (Bertocchi et al., 2010).

For periods other than a year, replace m by mt and s® by v?t, where v is the
traditional volatility of the stock as used in the BS formula.

It is convenient now to specify m and s and compute p and o but in Part 2
we plan to use distributions other than the lognormal, where m and s may not be
explicit, so then we’ll use the corresponding values of 1 and o.

From the put-call parity theorem, there should be an equivalence between port-
folios which consist of long puts plus long equity, and portfolios which are long the
matching calls and long T-bills.

The put-call parity theorem for European options, with no dividends paid by
the underlying security and no transactions costs, is:

S=C-P+Ke ™™ (3)

where K is the strike price of both put P and call C,r is the riskless rate, T' is the
common time to expiration for P and C, and S is the stock (or equity index) price.

The well-known argument is this: at expiration, both sides have gained exactly S
so their initial prices must be the same (to prevent arbitrage).

For computer code to compute P or C, see Haug, The Complete Guide to Option
Pricing Formulas, page 3 and Appendix A.

Rewriting (3) as

S+P=C+Ke T (4)

shows that equity plus a put is equivalent to a call plus a T-bill.
To insure against major downside losses, we might consider two types of port-
folios, corresponding to the two sides of equation (4).

Type I: A (weighted) combination of long S, long P and long or short T-bills.
Type II: A (weighted) combination of C long and T-bills long or short.
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As they are equivalent, we look at the simpler Type II

Portfolio weights add to 1. Weights are also limited so as to prevent total loss.
For a portfolio consisting of call options and T-bills, this means the portfolio is long
in both options and T-bills.

The Black—Scholes formula:

C = 8N(dy) — Ke "TN(ds)
P=—8N(—d1) + Ke "TN(—da)
_ In(S/K) + (r +v2/2)T

d
' w/T
i In(S/K) + (r —v?/2)T
’ /T
= d,l = ’l)ﬁ
striKe
riskless (continuously compounded) rate
volatility

(geometric) growth rate of stock
time until option expiration
N is the standard N (0, 1) normal distribution.

N3 e s A

We assume the initial capital W = 1 and the initial equity index price S = 1.

Next we compute C' and invest an amount f in C.

Example: C' = 0.2, we invest f = .04 in ' so we buy 2 calls. In general, f buys
f/C calls.

Note: f > 0 and f < 1 to avoid total loss.

We invest the remainder, 1 — f in T-bills, which grows to (1 — f)e™™.

The future values at time T of the call, C*, the stock, S*, and the wealth, W*,
are random variables marked with asterisks.

One call pays max(S* — K,0) = C* at time 7",

Investing f in calls buys f/C calls, which pay

%C* = %max(S* — K.,0)

The portfolio payoff at time 7" is W*. To find the Sharpe ratio we need E(W™) and
a(W™) = /V(W*) where V(W™) is the variance of W*.

E(C*) = Elmax(5" — K,0)] = / (z — K)q(z)dz

=K

where g(z) is the lognormal:

(@) = 1 o {f(lnxflnS—mT)z}
W= e T 20°T '
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{Note: For convenience, we chose S =1s0InS§=0.)
oo

BUCY)= [ (o KPaade

K
V(C™) = E[(C*)*] - [B(C)*.

Since the portfolio payoff W* is:

W= (- flerT

-

Ql= Ql-

max($* — K, 0) (5)

EW*)=(1-feT+

=
9

and

(Lren) = (&) vesen
L) tme- ey
The Sharpe ratio is

Sharpe(W*) = (E(W*/W)—1) — (8rT =1 _ E(W*) — AT

VV(W* /W) VV(W*)
which simplifies to
Ele*) 6™ ©)
{E[(C")?] - [E(C)]?}05
and is independent of f.
Since § = 1, if K =050 C = S then
E(S*) = exp{(m +v*2T)}
Var(§*) = {exp(v*T) — L} exp|(2m +v*)T]
Sharpe(S™) = exp{(m + v¥/2)T} — "7 )

({exp(vT) — 1} expl(2m + 02)T))1/?

should be the limiting value as K | 0.
Note that the arithmetic Sharpe Ratio is independent of f for any investment:

R; = return on any investment [
Rp = return on riskless investment
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Invest in 7,
E(R;) — Ro
Sharpe(I) =
o(Rr)

Invest f in 7, f in Rp, where f =1 — f, and

{E(fR;)+ fRo}—Ro _ fE(R;)— fRo

Sharpe(f) = TolR) =@ Sharpe(I)
Note that
Sharpe(r) = BB —Ro _ (BE)+1) ~(Ro+1) _ EWy) e

o(R;) o(Rr) T a(Wp)

where we use the fact that o(R;) = o(Rr + 1) = o(Wj) since adding a constant
doesn’t affect the standard deviation.

3. Geometric Growth, Standard Deviation
and Sharpe Ratio

Next, we wish to study how, for fixed K, F log W™ varies with f, where W~ is given
by equation (5). Note that 0 < f < 1 since with f =1 and K > 0, W~ can be 0,
with positive probability and log0 is not defined (—oo). This limitation to f < 1
for periodic portfolio revisions is not necessary when the portfolio is continuously
adjusted because the portfolio can be revised before total loss occurs.

From equ. (5),

Gv") = 1o =Tog{ (1 = e + Ltz — K. 0} ©)

g(W?*) = E(G(W™)) = Elog W™ '(10)

g(W™) / (log W*)q
- /D log{(1 - )e'T}q(z)dz

+ [Togla- et s Le- 00} e

K

where we replaced max(x — K,0) in the last expression by x — K since they are
equal over the range of integration, K < x < oo,

We compute the corresponding values for stddev (G) = sqrt(Var ) using

Var G = E(G?) - [E(G)]? (11)
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Note that E(G) = g(W*) has already been computed from equation (10). Similarly,
we have

B@) - [ ” (log W*)a(z)dz (12)
= / log{(1 — /)T ) Pq(z)de

+ /w {log{(l_f)em—i-%(:c— K)}rq(@»)dz

K
W) —
Sharpe(G) = % (125)

Values of g = g(W*),v = stddev(@), and Sharpe (G) were computed from
equations (10), (11), {12) and (12s) using Mathematica. They are displayed in
Tables 1, 2 and 3.

The tables show there are very different portfolios which have approximately
the same g and o(G) as the index.

For example,

Portfolio 1: K = 0.9, f = 0.2 has g = 0.0986,0(G) = 0.2103, close to the index at
K =0.0, f = 1.0, g = 0.1000, o(G) = 0.2000.

Also interesting is

Portfolio 2: K = 0.8, f = 0.2 which has g = 0.0918, ¢(G) = 0.1580, giving up some
growth for a risk reduction of about 1/5.

The Efficient Frontier

To compute values of g, and Sharpe for portfolios combining the index and T-bills,
with K = 0, f = 0.1 to 0.9, we modify equations (9), (10) and (12) by replacing
{max(m — K,0) with fz, yielding

GW*) =logW* = log{(1 — f)e’"T + fxz} (9a)
o) = [~ log{(1— e + fadale)ie (10a)
B@) = [ log{(1~ 1) + folPatelde (12a)

where the first integral drops out for (10a) and (12a) because K = 0.

The column f = 1 is the special case where no money is invested in T-bills.
However, we can’t put it all in call options with K fixed and greater than zero
because that gives a positive probability of total loss, which is forbidden by the
policy max E log(W*).

The sole admissible f = 1 investment is 100% in the index so we have, for the
K =0 rows only, g = 0.10, v = 0.20, Sharpe = 0.25, as shown.




FA

b1436-ch40

Handbook of the Fundamentals of Financial Decision Making 9.75in x 6.5in

February 26, 2013 15:28

uy

Chapter 40. Mazimizing Capital Growth With Black Swan Protection

¥8EE'T— GOFGI— SIFPI'T— 8PS80— €TEY0— S0SF'0— TL6T0— EPOT0—  8LFO0- 4
88T C— PEEST— 86T T— 9E¥R'0— 8IZ9'0— SOPF'0— 188C°0— ¥9ST'0— €IF00— 6'T
T96T°2— 6808'T— TFLOT'T— 6TC8°0— LE090— E£ETFO0— ¥ELC0— LZPT'0— 9080°0— 81
SePT'Z— 0S9%'1— BL90'T— O0L8LO— T0L5°0— 6E€68'0— PIPE0— 8OZI'O— SFI00-— LT
TRG0'T— 6068 T— FE00'T— 98TL0— 6LIS°0— 6LFE°0— 6900°0— 6880°0— 1000 91
PLI6'T— QFAT'T— 0Z06'0— 60¥9°0— 9TFP0— §28Z0— 62S1°0— 9LF0°0— EZE0'0 o1
9L0L'T— 0L0T'T— 9TI9L°0— 6T850— €IFPE'0— 8661°0— AL80°0— TIO0D0— H950°0 LA
LETH T—  LBSR'0— 098G'0— E€8LE'0— 6%CC0— ¢80T'0— 00200— <T¥0'0 £9.0°0 €1
0TRO'T— 00¥P9°0— 8E6£'0— TLTZ'0— ¥SOT'0— 6120°0— 06€0°0 09400 84800 o'l
8RT1L'0— £06¢0— @60E'0— O0T60°0— L600°0— RKEFO0 £080°0 £660°0 ¥880°0 L L
G06€°0— ELLT'O— F¥I90°0— 9TTI0°0 1650°0 1880°0 6101°0 FI0T'0 9GR0°0 T
1ZP1T°0— LSTO'0— 892070 rLO0 7960°0 890T°0 £40T°0 9860°0 1080°0 6’0
460070 1190°0 €880°0 ZeotT’o L60OT'0 S60T°0 PEOT0 81600 cvLO0 80
£180°0 0660°0 940T°0 90TT°0 760T°0 SY01°0 2960°0 S¥80°0 2690°0 L0
LG0T1°0 86010 SOTT°0 980T'0 E¥0T°0 8L60°0 £680°0 84070 Gg90°0 90
SOIL'0 660T1°0 LL0T°0 6E0T°0 9860°0 6160°0 LEBO0 T#L0°0 6690°0 g0
£60T°0 690T°0 Ge0T'0 0660°0 9€60°0 TLR0°0 G6L0°0 80400 0190°0 70
£90T°0 cE0T'0 76600 8%60°0 ¥680°0 2E80°0 c9L0°0 789070 96500 £0
0801°0 9660°0 98600 0160°0 8GR0°0 00800 SeL0°0 79900 9860°0 c'0
8660°0 €960°0 £260°'0 8L80°0 8280°0 €LL0°0 E€TL0'0 8¥90°0 LLS0°0 0
0001°0 8960°0 £€60'0 ¥680°0 08800 €080°0 1820°0 S690°0 G£90°0 04500 0
T 60 8'0 L0 90 g0 70 €0 z0 0 bt

J :poysaaut eide)) jo uonoelq ‘3 9oL LG
reak 1=1, opr] uond() ‘gor =1 ey Ssop(sry ‘gl = A tAIIIR[0A A[1e0A TT=W :3molx) dDLewoay) A[180L Ueay
‘[PpoN [BwIoN 807 ‘YIMOoIr) OlIjeWeRs) T AQEL




February 26, 2013 15:28 Handbook of the Fundamentals of Financial Decision Making 9.75in x 6.5in b1436-ch40
856 EQ Thorp and S Mizusawa
Table 2: Standard Deviation of Geometric Growth, Log Normal Model.
m=.1, v=.2, r=.05, T =1, Strike: K, Fraction Invested: f
K f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.0214 0.0423 0.0627 0.0829 0.1027 0.1224 0.1419 0.1613 0.1806 0.2000
0.1 0.0236 0.0466 0.0691 0.0912 0.1131 0.1347 0.1561 0.1775 0.1990
0.2 0.0263 0.0519 0.0769 0.1015 0.1258 0.1498 0.1737 0.1977 0.2217
0.3 0.0298 0.0586 0.0868 0.1145 0.1418 0.1689 0.1960 0.2233 0.2508
0.4 0.0343 0.0674 0.0996 0.1313 0.1626 0.1939 0.2253 0.2571 0.2898
0.5 0.0403 0.0791 0.1169 0.1540 0.1910 0.2281 0.2668 0.3048 0.3459
0.6 0.0490 0.0959 0.1415 0.1866 0.2318 0.2780 0.3261 0.3779 0.4371
0.7 0.0620 0.1209 0.1781 0.2351 0.2932 0.3541 0.4202 0.4964 0.5963
0.8 0.0817 0.1580 0.2319 0.3060 0.3828 0.4654 0.5590 0.6743 0.8435
0.9 0.1105 0.2103 0.3057 0.4011 0.5006 0.6094 0.7358 0.8975 1.1494
i 0.1502 0.2778 0.3964 0.5135 0.6349 0.7678 0.9234 1.1249 1.4453
i 3 0.2006 0.3559 0.4944 06276 0.7638 0.9115 1.0834 1.3055 1.6584
12 0.2584 0.4343 0.5830 0.7219 0.8611 1.0096 1.1805 1.3990 1.7431
1.3 0.3156 0.4980 0.6440 0.7760 0.9055 1.0415 1.1957 1.3907 1.6942
1.4 0.3605 0.5327 0.6637 0.7788 0.8895 1.0040 1.1324 1.2929 1.5400
1.5 0.3825 0.5312 0.6396 0.7327 0.8208 0.9110 1.0110 1.1350 1.3245
1.6 0.3772 0.4962 0.5801 0.6510 0.7173 0.7845 0.8587 0.9501 1.0890
1.7 0.3480 0.4375 0.4992 0.5508 0.5986 0.6469 0.6999 0.7650 0.8635
1.8 0.3032 0.3675 0.4112 0.4475 0.4810 0.5147 0.5515 0.5967 0.6649
1.9 0.2518 0.2966 0.3268 0.3517 0.3746 0.3976 0.4228 0.4535 0.4999
2 0.2012 0.2317 0.2521 0.2680 0.2844 0.2999 0.3168 0.3375 0.3687
Table 3: Sharpe of Geometric Growth, Log Normal Model.
m=.1, v=.2, r=.05, T=1, Strike: K, Fraction Invested: f
K 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.3271 0.3194 0.3114 0.3032 0.2948 0.2863 0.2775 0.2685 0.2594 0.2500
0.1 0.3263 0.3177 0.3088 0.2997 0.2904 0.2808 0.2709 0.2608 0.2505
0.2 0.3253 0.3157 0.3057 0.2954 0.2848 0.2739 0.2627 0.25611 0.2393
0.3 0.3241 0.3130 0.3016 0.2897 0.2775 0.2649 0.2519 0.2385 0.2246
0.4 0.3224 0.3096 0.2962 0.2823 0.2679 0.2530 0.2375 0.2214 0.2045
0.5 0.3201 0.3048 0.2887 0.2719 0.2544 0.2361 0.2169 0.1966 0.1749
0.6 0.3166 0.2976 0.2775 0.2564 0.2342 0.2107 0.1855 0.1582 0.1273
0.7 0.3099 0.2855 0.2595 0.2320 0.2027 0.1713 0.1371 0.0987 0.0524
0.8 0.2962 0.2644 0.2304 0.1944 0.1558 0.1143 0.0686 0.0165 —0.0478
0.9 0.2722  0.2311 0.1876 0.1416 0.0927 0.0400 —0.0180 —0.0843 —0.1671
L 0.2369 0.1850 0.1308 0.0741 0.0143 —0.0500 —0.1207 —0.2020 —0.3048
LY 0.1916 0.1273 0.0614 —0.0067 —0.0782 —0.1547 —0.2392 —0.3373 —0.4635
1.2 0.1385 0.0600 —0.0189 —0.0996 —0.1840 —0.2745 —0.3751 —0.4932 —0.6488
1.3 0.0800 —0.0150 —0.1086 —0.2039 —0.3036 —0.4112 —0.5319 —0.6757 —0.8699
1.4 0.0179 —0.0962 —0.2074 —0.3207 —0.4399 —0.5696 —0.7167 —0.8950 —1.1413
1.5 —0.0466 —0.1837 —0.3172 —0.4538 —0.5989 —0.7584 —0.9416 —1.1670 —1.4854
1.6 —0.1137 —0.2799 —0.4429 —0.6112 —0.7917 —0.9923 —1.2256 —1.5166 —1.9360
1.7  —0.1852 —0.3903 —0.5937 —0.8059 —1.0358 —1.2938 —1.5972 —1.9805 —2.5427
1.8 —0.2657 —0.5243 —0.7839 —1.0578 —1.3571 —1.6961 —2.0985 —2.6126 —3.3782
1.9 —0.3624 —0.6958 —1.0348 —1.3957 —1.7933 —2.2473 —2.7906 —3.4913 —4.5482
2 —0.4858 —0.9250 —1.3765 —1.8612 —2.3990 —3.0170 —3.7618 —4.7304 —6.2074
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The column f = 0 is the special case where all the money is invested in T-bills.
Since no options are purchased, K is irrelevant. The value of g is 0.05, the standard
deviation is (conventionally) assumed to be zero and the Sharpe ratio is (0 — 0)/0,
undefined. This column is omitted.

A look at Tables 1, 2, and 3 shows that the geometric Sharpe ratio is greatest
for a given f when K = 0, i.e. when we buy the index rather than call options. Also
the Sharpe ratio decreases, for a given f, as we increase K, i.e. raise the strike price
of the call options in the portfolio.

Figure 1 plots g versus v for those points in the Table such that g > 0.05
and v < 0.50. Most of these points fall on, or very close to, a downward opening
“parabola” approximating g = .05+ .35v — .5v2. The part left of, and including the
peak, indicates the geometric mean/standard deviation efficient frontier. Maximum
compound growth occurs at about g = 0.1106, v = 0.35(f = 0.6, K = 0.7). Note
that the geometric efficient frontier is concave unlike the arithmetic efficient frontier,
which with its constant Sharpe ratio, is a straight line. For instance, a straight line
joining T-bills at g = 0.05,v = 0 with the index at g = 0.10, v = .20, crosses
v = 0.10 at g = 0.075 whereas the efficient frontier value of g = 0.08 is about
0.5%/year higher

The points from the column f = 0.1 start out on the efficient frontier but as
K increases they fall away in their own lower “parabola,” which peaks at K = 1.1,
g = 0.88, v = 0.20, Sharpe = 0.19. The points from f = 0.2 break away in a
somewhat higher curve, peaking at K = 1.0, g = 0.10, v = 0.28, Sharpe = 0.19.
The f = 0.3 points continue the pattern. For f > 0.4 the points remain very close
to the efficient frontier over the range of values in the plot. The shaded zone in
Table 1 indicates the points in the Figure which appear to fall on the efficient
frontier.

From both Figure 1 and the Tables, it appears that we can produce any point on
the geometric efficient frontier between T-bills (v = 0.00,g = 0.05) and the index
(v =0.20,g = 0.10) using a mix of only the index and treasury bills. Thus, for this
part of the efficient frontier, using the metric of the geometric Sharpe ratio, call
options on the index in the portfolio appear to have no advantage over using the
index directly. However, the part of the efficient frontier between v = 0.20, g = 0.10
and v = .35,g = 0.11 comes only from call options plus T-bills. The (f, K) pairs
which appear here, shaded in Table 2, are a subset of the shaded points in Table 1.

Though using options for “Black Swan insurance” seems to confer no long
run growth benefits, intuition suggests we look at short and intermediate payoff
structures.

4. Simulations

Because options protect against large losses, one wonders whether there are charac-
teristics, such as less severe maximum drawdowns, that would make portfolios 1 or 2,
for instance, “better” than the index. To explore this, we compare the maximum
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drawdown cumulative distribution functions for some of the option portfolios with
some of the index portfolios.

We selected maximum drawdown as a metric because a big drawdown in the
short run often causes investors to abandon superior long term strategies. We use
Monte Carlo simulations to construct the maximum drawdown cumulative distri-
bution functions.

We simulated histograms of the probability density function and the cumulative
distribution function for 100,000 random draws for each of 1,2,4, ..., 128 periods.

Let S1,5s,. .. be simulation results for the indez for periods 1,2, .... To calculate
the S; we use the random variable
5 = exp{mT + vVTN*(0,1)} (13)

where N*(0,1) is normal with mean 0 and variance 1.
For T = 1(year): S* = exp{m + vN*(0,1)} = exp{N*(m,v?)} where N*(m,v?)

is normal with mean m and variance v?.

If m =0.10,v = 0.20, then
5* = exp{N*(0.10, (0.20)*)}.
If N1, Ny, ... are random values of N*(0.10,0.20%) then random values of S* are
S1,85,... where S; = exp{N;}.

To simulate the index, from eqn. (15), setting f =1, K =0, and noting C =5 =1
for the index, we get W; = S;. To simulate portfolios having calls and T-bills, we
calculate the payoff random values for the call C* as

C; = max(S; — K,0). (14)
Then from eqn. (5), we get the random values of W; as
W; = (1—f)e‘"T+%max(SifK,0). (15)

Note that C is the original Black-Scholes Call value at the start of the period.
As a check, it should be true that

1 ™
= > log Wi — g(W™) (16)
i=1
which is the g we previously computed.
If Wy is the wealth after M simulated periods,

M
W =[] Wi
i=1
and this, repeated many times, will give us a distribution for the maximum
percentage drawdown.
After calculating Tables 1, 2 and 3, and plotting results in Figure 1, we compared
several option strategies with index strategies having approximately the same g
and v. The option strategy K = 0.6333, f = 0.4 has about the same g and v as
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Cumulative Distribution of Maximum Drawdowns
Distribution
1.0

0.8 a
0.6 o
0.4

02f &

Max Drawdown
0.2 0.4 0.6 0.8 0

Figure 2: Comparison of the cumulative distribution of maximum drawdowns for the option
strategy K = .75 and f = .3(e) and the index (x) for T = 8.

Cumulative Distribution of Maximum Drawdowns
Distribution

1.0 o ——
0.8 R

0.6

0.4 i

0.2 o

Max Drawdown
0.2 0.4 0.6 0.8 1.0

Figure 3: Comparison of the Drawdown for the option strategy K = .9 and f = .2(e) and the
index (x) for T' = 100.

the index and the distribution of maximum drawdown (DMD) was virtually the
same for both strategies for all the times T = 1,2,4,...,128. The combination
K = 0.75,f = 0.3 also has g and v close to the index, but here the one-period
limited loss of the option strategy visibly affects the distribution. The DMD for the
option strategy is initially lower (more small MDs), then “jumps” above the DMD
for the index strategy (fewer large drawdowns). Figure 2 shows the case for T' = 8.
As T increases, the cross-over point drops towards 0 and the option strategy MDD
curve moves slightly above the index MDD curve for all but small DDs.

When we reduce f further and compare the option strategy K = 0.9, f = 0.2
with the index when T' = 100, the MDD curve clearly dominates that for the index
over more than 95% of their range. This is despite the fact that the index has
slightly better g, v and Sharpe. (See Figure 3.)
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Cumulative Distribution of Maximum Drawdowns
Distribution
1.0 N R
0.8
0.6

0.4

Max Drawdown
0.05 0.10 0.15 0.20 5

Figure 4: Option strategy f = .1, K = .8(e) versus index strategy f = .4 and K =0 (x) for T = 2.

Cumulative Distribution of Maximum Drawdowns
Distribution
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0.4
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* Max Drawdown
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Figure 5: Option strategy f = .1, K = .8(e) versus index strategy f = .4 and K = 0 (x) for
T = 64,

The effect gets even stronger as we match the option strategy f = 0.1, K = 0.8
with the index strategy f = 0.4, K = 0. Figure 4 shows the result for 7' = 2 and
Figure 5 is the case T' = 64. (Note: The horizontal axis scales are different to bring
out detail.)

The possible impact of options on reducing maximum drawdown is dramatically
illustrated in Figures 6 and 7. Here we compare the option portfolio f = 0.1, K = 1.1
with two index portfolios on the efficient frontier. The first index portfolio f = 0.7,
K = 0, has about the same g = 0.0894, versus 0.0884, but a much smaller v of
0.1419 versus 0.2006 for the option portfolio. Even though the index portfolio has
much less risk (measured by v), and the option portfolio is well within the efficient
frontier, the DMD curves are about the same, with perhaps only a small edge for
the index portfolio.

This generally holds over the entire range of 7' = 1,2,4,...,128. What if we
match the risk v of this option portfolio with an index portfolio? Choosing f = 1.0,
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Cumulative Distribution of Maximum Drawdewns
Distribution
1.0

0.8 q
0.6
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Figure 6: Option strategy f = .1, K = 1.1(e) versus index strategy f = .7, K =0 (x) for T = 16.
Riskless rate r = 5%.

Cumulative Distribution of Maximum Drawdowns
Distribution
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Figure 7: Option strategy f = .1, K = 1.1(e) versus index strategy f = 1.0, K = 0 (x) for T = 16.
Riskless rate r = 5%.

K = 0 for the index portfolio, we have g = 0.1000 versus 0.0884 and v = 0.2000
versus (.2006. Even though the index has an edge of 1.16% in expected annual
long term growth, the DMD for the option portfolio, as shown in Figure 7, is much
better. As T increases, the cross-over point drops rapidly towards 0 and the DMD
for the option portfolio increasingly dominates.

These two examples suggest several ideas. First, if we have an option portfolio
inside the efficient frontier, the index portfolio which dominates it (at least the same
g, at most the same v) and has the most competitive DMD for larger T', is the index
portfolio of the same g (and, of course, lesser v). Secondly, the MD benefits of the
option portfolios seem to have two sources: (a) maximum loss in any one period is
limited to no more than f(r > 0%) and (b) for comparable portfolios, more of the
option portfolio’s return comes from the “certain” return of T-bills, further limiting
maximum one-period loss. The result is (mostly) less extreme drawdowns.
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Cumulative Distribution of Maximum Drawdowns
Distribution
1.0
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i
0.4 ¢
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Max Drawdown
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Figure 8: Option strategy f = .1, K = 1.1{e) versus index strategy f = 1.0, K = 0 (x) for T = 16.
Riskless rate r = 2%.
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Distribution
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Figure 9: Option strategy f = .1, K = 1.1{e) versus index strategy f = 1.0, K = 0 (x) for T = 16.
Riskless rate r = 0%.

We would expect, then, that reducing the interest rate r would shift the DMD
for the option portfolio to the right. The change between Figure 7 and Figure 8
shows the effect of dropping 7 from 5% to 2%, for T' = 16. The DMDs are roughly
the same. Again, this holds as T increases from 16 to 128.

With 7 = 0%, Figure 9 shows a further shift to the right of the option portfolio
DMD for T = 16. With the option portfolio stripped of its interest income com-
ponent, the superior g of the index portfolio leads to an early DMD dominance as
T increases. In contrast, Figure 10 shows that increasing r to 8% gives the option
portfolio overwhelmingly better MDD characteristics.
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Cumulative Distribution of Maximum Drawdowns
Distribution
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Figure 10: Option strategy f = .1, K = 1.1(e) versus index strategy f = 1.0, K = 0 (x) for
T = 16. Riskless rate r = 8%.

Conclusions

In the Black-Scholes world of Mediocristan, call option portfolios which are on
the geometric efficient frontier can reduce maximum drawdown risk compared to
equivalent index strategies (Figures 4 and 5). The effecl is stronger with a lower
fraction f in the options portfolio (this reduces the achievable portion of the efficient
frontier), a higher strike price K for the options (more leverage), and a higher
riskless rate.

Call option portfolios which are not on the efficient frontier may substantially
reduce multiperiod maximum drawdown risk at the cost of reduced long term growth
or increased long term risk.

The possible advantages or tradeoffs in using call options on the index instead of
the index to reduce multiperiod maximum drawdowns depend in a complex way on
many factors. These include distributional assumptions e.g. (lognormal) for index
returns and parameter values such as m, s and r. An important practical question
is the price (compared to “fair” price) and availability of index call options.

5. Extremistan

Here we explore the world of Extremistan by using a distribution with fatter tails
than the lognormal. As before, portfolios are limited to either T-bills plus a stock
index or T-bills plus call options on this stock index and we assume no transactions
costs. After considering various proposed fat-tailed distributions, we chose to make
up our own, a t-distribution with four degrees of freedom, truncated at zero (i.e. set
equal to zero for negative values of the argument). The arithmetic mean p = 1.12750
and variance o2 = 0.05188 match those we used for Mediocristan. The resulting
density function is

plz) = 72.416(4 + 36.3275(—1.12562+ z)?) %2 for z > 0 (17)

and p(z) =0 for z < 0
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Again, the index pays no dividends and the portfolio is revised annually. Calls are
European, i.e. only exercisable at expiration. Recall that the Black-Scholes formula
for European calls results if we take the lognormal distribution and replace the
expected growth rate by the riskless rate. If this mean-growth-rate-shifted lognormal
distribution is w(z) then

o]
(= 67"/ (x — K)w(z)dz (18)
z=K

However, because we have only specified a terminal distribution of index prices,
and not one resulting from a process with known transition probabilities, we don’t
have a “no arbitrage” model for call option pricing.! Proceeding by analogy with
equation {18), and choosing T' = 1 (year), we priced the options in a risk-neutral
setting using the fat-tailed density function of equation (17).

Let u(z) equal p(z) after shifting its mean so that its expected growth rate
equals the riskless rate, i.e.

]DO u(z)dr = /:C w(r)dr = e”

—0oC
Note that when p(z) is mean-shifted to get w(z), the point where u(z) becomes
non-zero is at some number A < 0, whereas for p(z) it was at 0.
Now calculate C from

C=e" /x (z — K)u(x)dx (19)

Note that K > 0 > A so we don’t ever include the values of  where u(z) = 0.

We obtained the density function u(z) by shifting the mean of p(z) to
ji = exp(.05) = 1.05127, the one year wealth relative at our assumed riskless
compound growth rate of 5%. The difference between the mean of uw and [ is
1.12749 — 1.05127 = 0.07622 so we change —1.12562 in (17) to —1.2562 — 0.07622 =
—1.04940 to get u(z) in equation (20).

u(z) = 72.416(4 + 36.3275(—1.04940 + z)?)5/2 (20)
for z > —0.07622 and
u(z) =0 forxr < —0.07622.

Alternatively, we could have truncated the risk neutral t-distribution at zero,
for fi and o, finding it by the same process we used to find p(zx).

Table 4 compares the call prices we used for Extremistan with those for
Mediocristan. The differences are small in magnitude across the entire range.

However, the truncated ¢ distribution leads to much greater maximum draw-
downs than in the lognormal case as Figures 11 and 12 show. Figure 11 shows the

1See Ekstrom, et al., Quantitative Finance Vol. II, No. 8, August 2011, page 1125, for a discussion
of when we have no-arbitrage pricing or risk-neutral pricing models. Also see J. Huston McCulloch,
“The Risk-Neutral Measure and Option Pricing Under Log-Stable Uncertainty,” http://www.econ.
ohio-state.edu/jhm/papers/rnm.pdf.
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Table 4: Call Prices Compared for
Lognormal and Truncated Student £.

K Lognormal Student ¢

2 .809 .809

4 619 .620

.6 429 433

8 .245 253
1.0 104 105
1.2 .0325 .0299
1.4 .00785 .00861
1.6 .00158 .00315
1.8 .000286 .00142
2.0 .0000479 .000748
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simulated cumulative distribution of the maximum drawdown for the lognormal.
The five curves represent fractions of 0.2,0.4,0.6,0.8 and 1.0 in the index. As the
fraction increases, the curves of course move progressively to the right. Figure 12
displays the same graphs for the truncated ¢ distribution.

6. Geometric Growth, Standard Deviation
and Sharpe Ratio

Proceeding as before we compute g, o and the Sharpe ratio from equations (9)—(12),
(9a)—(12a), and (12s), replacing the lognormal g(x) by the truncated Student ¢ u(x)
thronghout. The results, in Figure 13 and Tables 5-7, correspond to those for
Mediocristan, Figure 1 and Tables 1-3.

Figure 13 shows that for o < 0.10, g < 0.08, the option and index portfolios lie
close to a common curve. To prefer one over the other requires a different metric. In
the range 0.10 < o < 0.24, the option portfolios have a greater g for a given o, or
alternatively, less o for a given g, with the exception of f = 0.1. Above ¢ = 0.24, the
option portfolios have an efficient frontier peak at f = 0.4, K = 0.9, with g = 0.1168,
o =0.3593.

We illustrate some possible tradeoffs. It is helpful to use Figure 13 to compare
the points for the pairs of portfolios in our examples.

Figure 14 shows the MDD distribution for the option portfolic K = 1.1, f = 0.1,
T = 32 years, where g = 0.0869, ¢ = 0.1926, and Sh = 0.1915, versus the index
portfolio f = 1.0, which has g = 0.0968, o = 0.2333, and Sh = 0.2005. Although
the option portfolio has an annualized growth rate that is 1% less, and is well inside
the efficient frontier, the reduction in MDD is enormous — a great comfort to the
portfolio manager who wants to retain his clients and his job. The index portfolio
has a 50% MDD with probability about 40% while the option portfolio rarely has
an MDD this large. The investor Michael Korns has followed a similar strategy for
more than a decade.

Just as in the Mediocristan examples, the MDD distribution at shorter times
typically favors an index portfolio for small MDD and a “comparable” option
portfolio for large MDD, with the option MDD becoming more dominant as T’
increases.

When K = 0.9, f = 0.2, T = 32 the option portfolio has g = 0.0999, ¢ = 0.1878,
S5h = 0.2656 whereas the index portfolio with f = 1.0 is inside the efficient frontier
at g = 0.0968, ¢ = 0.2333 and Sh = 0.2005. The dramatic reduction in “tail risk”
is illustrated in Figure 15.

The portfolio with the highest growth is K = 0.9, f = 0.4. Sitting at the peak of
the efficient frontier, it yields g = 0.1168, ¢ = 0.3593, and Sh = 0.2274. Although
g and Sh are much better than the index, the MDD graphs in Figure 16 show a
“ride” so wild few investors are likely to stay with it.
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Table 5: Geometric Growth for Extremistan, r=.05, T=1 year, using truncated Student T
distribution with 4 degrees of freedom, Mean of 1.12749, Variance of 0.0518805. 7/13/2011.

> 01 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
K 0.0 0.0570 0.0635 0.0695 0.0750 0.0801 0.0847 0.0887 0.0922 0.0951 0.0968

0.1 0.0577 0.0648 0.0713 0.0772 0.0826 0.0873 0.0914 0.0947 0.0971

0.2 0.0585 0.0663 0.0734 0.0798 0.0854 0.0903 0.0943 0.0974 0.0990

0.3 0.0596 0.0683 0.0760 0.0829 0.0888 0.0938 0.0976 0.1000 0.1004

0.4 0.0610 0.0707 0.0793 0.0867 0.0928 0.0977 0.1011 0.1025 0.1009

0.5 0.0627 0.0738 0.0834 0.0913 0.0976 0.1022 0.1046 0.1043 0.0991

0.6 0.0652 0.0780 0.0886 0.0971 0.1033 0.1070 0.1076 0.1040 0.0925

0.7 0.0685 0.0836 0.0954 0.1042 0.1096 0.1113 0.1083 0.0985 0.0756

0.8 0.0733 0.0910 0.1039 0.1120 0.1150 0.1122 0.1019 0.0802 0.0353

0.9 0.0796 0.0999 0.1122 0.1168 0.1135 0.1007 0.0753 0.0301 —0.0580

1 0.0861 0.1055 0.1118 0.1059 0.0871 0.0529 —0.0026 —0.0930 —0.2623

1.1 0.0869 0.0950 0.0832 0.0534 0.0043 —0.0685 —0.1751 —0.3391 —0.6371

1.2 0.0741 0.0565 0.0135 —0.0522 —0.1429 —0.2655 —0.4348 —0.6857 —1.1309

1.3 0.0493 —0.0003 —0.0763 —0.1768 —0.3052 —0.4707 —0.6920 —1.0126 —1.5723

1.4 0.0219 —0.0540 —0.1543 —0.2786 —0.4317 —0.6243 —0.8774 —1.2394 —1.8651

1.5 —0.0008 —0.0940 —0.2089 —0.3467 —0.5134 —0.7204 —0.9901
1.6 —0.0174 —0.1207 —0.2436 —0.3887 —0.5624 —0.7767 —1.0547
1.7 —0.0289 —0.1379 —0.2652 —0.4140 —0.5914 —0.8095 —1.0917
1.8 —0.0366 —0.1489 —0.2786 —0.4296 —0.6089 —0.8290 —1.1134
1.9 —0.0418 —0.1561 —0.2872 —0.4393 —0.6197 —0.8410 —1.1266
—0.0454 —0.1608 —0.2928 —0.4456 —0.6267 —0.8486 —1.1349

2

—1.3732 —2.0320
—1.4481 —2.1229
—1.4903 —-2.1731
—1.5148 —2.2018
—1.5295 —2.2188

—1.5387 —

2.2293

Table 6: Std. Deviation for Extremistan, r =.05, T'=1 year, using truncated Student T distri-
bution with 4 degrees of freedom, Mean of 1.12749, Variance of 0.0518805. 7/14/2011.

> 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
K 0.0 00214 00425 00635 00845 0.1056 0.1272 0.1496 0.1731 0.1989 0.2333
0.1 00236 0.0469 00700 0.0032 01168 0.1409 0.1662 0.1935 0.2249
0.2 0.0263 00522 00779 0.1038 0.1302 0.1575 0.1864 0.2182 0.2567
0.3 0.0207 00588 00877 0.1169 0.1467 0.1779 0.2113 0.2488 0.2962
0.4 00339 0.0670 0.1000 0.1333 0.1676 0.2036 0.2427 0.2877 0.3467
0.5 0.0395 0.0778 0.1160 0.1546 01945 02368 0.2834 0.3382 0.4129
0.6 00470 0.0924 0.1374 0.1830 0.2303 0.2810 0.3377 0.4058 0.5022
0.7 00577 01128 O0.1671 0.2221 0.2796 0.3417 04121 04987 0.6258
0.8 00737 0.1426 0.2100 02781 0.3494 04271 05166 0.6291 0.7996
0.9 0.0988 0.1878 0.2733 0.3593 0.4494 0.5481 0.6631 0.8103 1.0400
1 01379 0.2547 0.3638 04719 05845 0.7081 0.8529 1.0405 1.3384
11 01926 0.3401 0.4723 0.6003 0.7318 0.8752 1.0427 1.2509 1.6063
1.2 02511 04178 05595 0.6926 0.8267 09707 1.1371 1.3510 1.6897
13 0.2924 04559 0.5874 0.7071 0.8249 0.9492 1.0909 1.2708 1.5521
14 03071 04505 0.5604 0.6576 0.7515 0.8491 09580 1.0967 1.3098
1.5 0.3004 04185 0.5057 0.5812 0.6531 0.7270 0.8093 0.9118 1.0689
16 0.2815 0.3765 04447 0.5028 0.5576 0.6134 0.6753 0.7519 0.8687
1.7 0.2579 0.3339 03874 0.4326 04748 05177 0.5650 0.6233 0.7119
1.8 0.2337 02049 03374 0.3731 0.4063 04398 04767 05221 0.5908
1.9 0.2108 02607 02950 0.3236 0.3502 0.3769 0.4063 04424 0.4970
2 01901 0.2312 02593 0.2827 0.3043 03261 0.3500 0.3792 0.4235
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Table 7:  Sharpe for Extremistan, r =.05, T =1 year, using truncated Student T distribution with
4 degrees of freedom, Mean of 1.12749, Variance of 0.0518805. 7/14/2011.

> 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K 0.0 0.3265 0.3173 0.3073 0.2965 0.2850 0.2726 0.2591 0.2441 0.2266 0.2005
0.1 0.3255 0.3152 0.3040 0.2919 0.2788 0.2646 0.2489 0.2312 0.2093
0.2 0.3247 0.3132 0.3006 0.2869 0.2721 0.2559 0.2378 0.2170 0.1908
0.3 0.3240 0.3111 0.2969 0.2814 0.2645 0.2459 0.2252 0.2011 0.1702
0.4 0.3235 0.3089 0.2927 0.2750 0.2556 0.2344 0.2105 0.1826 0.1467
0.5 0.3231 0.3063 0.2877 0.2673 0.2450 0.2204 0.1928 0.1605 0.1183
0.6 0.3225 0.3030 0.2812 0.2575 0.2315 0.2028 0.1706 0.1330 0.0847
0.7 0.3208 0.2977 0.2720 0.2439 0.2132 0.1794 0.1415 0.0973 0.0409
0.8 0.31564 0.2877 0.2567 0.2229 0.1861 0.1457 0.1005 0.0481 —0.0184
0.9 0.3000 0.2656 0.2274 0.1860 0.1413 0.0925 0.0382 —0.0246 —0.1039
1 0.2622 0.2180 0.1698 0.1184 0.0635 0.0041 —0.0617 —0.1375 —0.2333
1.1 0.1915 0.1324 0.0703 0.0056 —0.0624 —0.1354 —0.2159 —0.3089 —0.4277
1.2 0.0961 0.0156 —0.0653 —0.1476 —0.2334 —0.3250 —0.4264 —0.5446 —0.6989
1.3 —-0.0025 —0.1103 —-0.2151 —0.3207 —0.4306 —0.5485 —0.6802 —0.8362 —1.0453
1.4 —0.0914 —0.2308 —0.3645 —0.4996 —0.6410 —0.7941 —0.9671 —1.1757 —1.4622
1.5 —0.1693 —0.3439 —0.5119 —0.6825 —0.8627 —1.0598 —1.2852 —1.5609 —1.9477
1.6 —0.2396 —0.4533 —0.6603 —0.8724 —1.0983 —1.3477 —1.6358 —1.9925 —2.5015
1.7 —0.3058 —0.5626 —0.8135 —1.0727 —1.3507 —1.6602 —2.0206 —2.4713 —3.1229
1.8 —0.3706 —0.6744 —0.9738 —1.2854 —1.6218 —1.9986 —2.4405 —2.9973 —3.8111
1.9 —0.4356 —0.7905 —1.1430 —1.5120 —1.9126 —2.3637 —2.8956 —3.5702 —4.5647
2 —0.5021 —-0.9118 —1.3217 —1.7530 —2.2234 —2.7554 —3.3857 —4.1893 —5.3825
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Figure 14: Comparison of the cumulative distribution of Maximum Drawdowns for Options with
K=1.1and f=.1 for T = 32 years (e) and Stock Index (fraction = 1.0) (x).

7. Caveats and Conclusions

As there is no generally accepted fat-tailed distribution for describing equity index
returns, we have made an arbitrary illustrative choice. Our truncated t-distribution
is not inconsistent with the observed anmual extreme returns over the last 86
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Figure 15: Comparison of the cumulative distribution of Maximum Drawdowns for Options with
K= 9and f= .2 for T = 32 years (o) and Stock Index (fraction = 1.0) (x).
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Figure 16: Comparison of the cumulative distribution of Maximum Drawdowns for Options with
K =.9and f= .4 for T = 32 years (o) and Stock Index (fraction = 1.0) (x).

calendar years. Some will argue that, even so, it is much too tame. We have also
made the simplifying assumptions that options are only exercisable at expiration
and that they can be priced by using the expected terminal value of the payoff, dis-
counted at the riskless rate. Anyone who wanted to apply the methods given here
would need to make their own set of choices for return distribution, option pricing
model, type of option, portfolio revision period, parameters like y, o, and r, etc.

Nonetheless, we would expect certain qualitative features of our results to persist
more generally, such as: (1) Options portfolios can attain regions of the geometric
mean-variance efficient frontier beyond the reach of the index portfolios. (2) If we
regard one maximum drawdown distribution as better than another if its right tail
dominates {i.e. less chance of extreme MDDs), then some options portfolios are both
on the efficient frontier and have better MDDs than the index portfolio which is the
closest in geometric mean, standard deviation, and Sharpe ratio.

FA
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In any practical application we need to include transactions costs and the impact
of taxes, either or both of which could oflsel the perceived advantages. One also
might want to stagger option expiration dates, e.g. 1/4 per quarter, to smooth out
costs, payolls, and the need to replace — if American options are used — options
which are exercised early.
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